Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2024, volume 25, issue 2, pages 105-114.
Section: Nuclear Physics.
Received: 08.11.2023; Accepted: 27.05.2024; Published online: 28.06.2024.
PDF Full text (en)
https://doi.org/10.15407/jnpae2024.02.105

Investigation of two-proton decay using modified formation probability

N. P. Saeed Abdulla1, A. Pavithran1, M. K. Preethi Rajan2, R. K. Biju1,3,*

1 Department of Physics, Government Brennen College, Dharmadam, Thalassery, Kerala, India
2 Department of Physics, Payyanur College, Kannur University, Payyanur, Kannur, Kerala, India
3 Department of Physics, Pazhassi Raja N. S. S. College, Mattanur, Kannur University, Kannur, Kerala, India


*Corresponding author. E-mail address: bijurkn@gmail.com

Abstract: In this study, we investigated two-proton radioactivity using the two-potential approach with a cosh-type potential to calculate the half-lives. The depth parameter V0 = 58.405 MeV and diffuseness a = 0.537 fm in the cosh-type nuclear potential show the lowest standard deviation between the calculated and experimental half-lives. We proposed a linear formula for the formation probability using the linear relationship between log10S2p and A1/3d for the angular momentum state l = 0, 2 and 4. The model achieved the lowest standard deviation (σ = 1.09) using this linear formula compared to previous models and empirical formulas. The proposed formula significantly improved the accuracy of half-life predictions by reducing the standard deviation from 1.73 to 1.09. The predicted half-lives exhibit a hindrance factor in the range of -1.62 to 2.42, which is the lowest compared to earlier theoretical predictions. These results indicate that the proposed linear formation probability formula is suitable for reproducing experimental half-lives. The linear formula for formation probability was generalized for different angular momentum states by conducting least squares fit. We extended the half-life and formation probability predictions to 48 nuclei, and the predicted half-lives are in good agreement with the previous five theoretical models and two empirical formula predictions.

Keywords: two-potential approach, formation probability.

References:

1. Y.B. Zeldovich. The existence of new isotopes of light nuclei and the equation of state of neutrons. Sov. Phys. JETP 38 (1960) 1123. http://www.jetp.ras.ru/cgi-bin/r/index/r/38/4/p1123?a=list

2. V.I. Goldanskii. The influence of pairing in the passage of two particles through the potential barrier. Phys. Lett. 14 (1965) 233. https://doi.org/10.1016/0031-9163(65)90603-7

3. V.I. Goldansky. Two-proton radioactivity. Nucl. Phys. 27 (1961) 648. https://doi.org/10.1016/0029-5582(61)90309-1

4. J. Jänecke. The emission of protons from light neutron-deficient nuclei. Nucl. Phys. 61 (1965) 326. https://doi.org/10.1016/0029-5582(65)90907-7

5. V.M. Galitsky, V.F. Cheltsov. Two-proton radioactivity theory. Nucl. Phys. 56 (1964) 86. https://doi.org/10.1016/0029-5582(64)90455-9

6. Y.-T. Zou et al. Systematic study of two-proton radioactivity with a screened electrostatic barrier. Chinese Phys. C 45 (2021) 104101. https://doi.org/10.1088/1674-1137/ac1b96

7. H.-M. Liu et al. Systematic study of two-proton radioactivity within a Gamow-like model. Chinese Phys. C 45 (2021) 044110. https://doi.org/10.1088/1674-1137/abe10f

8. F.C. Barker. 12O ground-state decay by 2He emission. Phys. Rev. C 63 (2001) 047303. https://doi.org/10.1103/PhysRevC.63.047303

9. L.V. Grigorenko, M.V. Zhukov. Two-proton radioactivity and three-body decay. III. Integral formulas for decay widths in a simplified semianalytical approach. Phys. Rev. C 76 (2007) 014008. https://doi.org/10.1103/PhysRevC.76.014008

10. R. Álvarez-Rodriguez et al. Distinction between sequential and direct three-body decays. Phys. Rev. Lett. 100 (2008) 192501. https://doi.org/10.1103/PhysRevLett.100.192501

11. D.-X. Zhu et al. Two-proton radioactivity within Coulomb and proximity potential model. Chinese Phys. C 46 (2022) 044106. https://doi.org/10.1103/PhysRevLett.100.192501

12. F. Xing et al. Two-proton radioactivity of ground and excited states within a unified fission model. Chinese Phys. C 45 (2021) 124105. https://doi.org/10.1088/1674-1137/ac2425

13. M.G. Srinivas et al. Exploring new proton emitting isotopes of Lanthanides. Indian J. Phys. 97 (2023) 203. https://doi.org/10.1007/s12648-021-02273-0

14. M.G. Srinivas et al. A Systematic Study of Proton Decay in Superheavy Elements. Ukr. J. Phys. 67 (2022) 631. https://doi.org/10.15407/ujpe67.9.631

15. M.G. Srinivas et al. Systematics of proton decay of actinides. Indian J. of Pure Ap. Phys. 58 (2020) 255. https://pdfs.semanticscholar.org/0ef6/8b9aae603501594140e552f64f0cb6327bd8.pdf

16. M.G. Srinivas et al. Proton decay of actinide nuclei. Nucl. Phys. A 995 (2020) 121689. https://doi.org/10.1016/j.nuclphysa.2019.121689

17. M.G. Srinivas et al. A systematic analysis for one proton radioactivity of ground state nuclei. Nucl. Phys. A 1036 (2023) 122673. https://doi.org/10.1016/j.nuclphysa.2023.122673

18. M.G. Srinivas et al. Semi-empirical formulae for one- and two-proton radioactivity. Indian J. Phys. 97 (2023) 1181. https://doi.org/10.1007/s12648-022-02432-x

19. H.C. Manjunatha et al. Proton Radioactivity of Heavy Nuclei of Atomic Number Range 72 < Z< 88. Phys. Part. Nuclei Lett. 17 (2020) 909. https://doi.org/10.1134/S1547477120070043

20. H.C. Manjunatha et al. Investigations on the superheavy nuclei with magic number of neutrons and protons. Int. J. Mod. Phys. E 29(05) (2020) 2050028. https://doi.org/10.1142/S0218301320500287

21. N.P. Saeed Abdulla, M.K. Preethi Rajan, R.K. Biju. Systematic study of two proton radioactivity within the effective liquid drop model. Phys. Scripta 99(3) (2024) 035310. https://doi.org/10.1088/1402-4896/ad2a2f

22. N.S. Abdulla, M.P. Preethi Rajan, R.K. Biju. An empirical formula for the two-proton decay half-lives in the ground and excited states. Nucl. Part. Phys. Proc. 339-340 (2023) 43. https://doi.org/10.1016/j.nuclphysbps.2023.07.013

23. N.P. Saeed Abdulla, M.K. Preethi Rajan, R.K. Biju. An empirical formula for the half-lives of one- and two-proton radioactivity. Int. J. Mod. Phys. E 33 (2024) 2450007. https://doi.org/10.1142/S0218301324500071

24. X. Pan et al. Systematic study of two-proton radioactivity half-lives using the two-potential and Skyrme-Hartree-Fock approaches. Chinese Phys. C 45 (2021) 124104. https://doi.org/10.1088/1674-1137/ac2421

25. B.A. Brown, F.C. Barker. Di-proton decay of 45Fe. Phys. Rev. C 67 (2003) 041304(R). https://doi.org/10.1103/PhysRevC.67.041304

26. J. Rotureau, J. Okołowicz, M. Płoszajczak. Theory of the two-proton radioactivity in the continuum shell model. Nucl. Phys. A 767 (2006) 13. https://doi.org/10.1016/j.nuclphysa.2005.12.005

27. J.P. Cui et al. Two-proton radioactivity within a generalized liquid drop model. Phys. Rev. C 101 (2020) 014301. https://doi.org/10.1103/PhysRevC.101.014301

28. M. Goncalves et al. Two-proton emission half-lives in the effective liquid drop model. Phys. Lett. B 774 (2017) 14. https://doi.org/10.1016/j.physletb.2017.09.032

29. I. Sreeja, M. Balasubramaniam. An empirical formula for the half-lives of exotic two-proton emission. Eur. Phys. J. A 55 (2019) 33. https://doi.org/10.1140/epja/i2019-12694-5

30. H.-M. Liu et al. New Geiger-Nuttall law for two-proton radioactivity. Chinese Phys. C 45 (2021) 024108. https://doi.org/10.1088/1674-1137/abd01e

31. G.J. KeKelis et al. Masses of the unbound nuclei 16Ne, 15F, and 12O. Phys. Rev. C 17 (1978) 1929. https://doi.org/10.1103/PhysRevC.17.1929

32. R.A. Kryger et al. Two-proton emission from the ground state of 12O. Phys. Rev. Lett. 74 (1995) 860. https://doi.org/10.1103/PhysRevLett.74.860

33. M. Pfützner et al. First evidence for the two-proton decay of 45Fe. Eur. Phys. J. A 14 (2002) 279. https://doi.org/10.1140/epja/i2002-10033-9

34. J. Giovinazzo et al. Two-proton radioactivity of 45Fe. Phys. Rev. Lett. 89 (2002) 102501. https://doi.org/10.1103/PhysRevLett.89.102501

35. B. Blank et al. First observation of 54Zn and its decay by two-proton emission. Phys. Rev. Lett. 94 (2005) 232501. https://doi.org/10.1103/PhysRevLett.94.232501

36. C. Dossat et al. Two-proton radioactivity studies with 45Fe and 48Ni. Phys. Rev. C 72 (2005) 054315. https://doi.org/10.1103/PhysRevC.72.054315

37. I. Mukha et al. Observation of two-proton radioactivity of 19Mg by tracking the decay products. Phys. Rev. Lett. 99 (2007) 182501.https://doi.org/10.1103/PhysRevLett.99.182501

38. T. Goigoux et al. Two-proton radioactivity of 67Kr. Phys. Rev. Lett. 117 (2016) 162501. https://doi.org/10.1103/PhysRevLett.117.162501

39. W. Whaling. Magnetic analysis of the Li6 (He3, t) Be6 reaction. Phys. Rev. 150 (1966) 836. https://doi.org/10.1103/PhysRev.150.836

40. C.J. Woodward, R.E. Tribble, D.M. Tanner. Mass of 16Ne. Phys. Rev. C 27(1983) 27. https://doi.org/10.1103/PhysRevC.27.27

41. B. Buck, A.C. Merchant, S.M. Perez. α decay calculations with a realistic potential. Phys. Rev. C 45 (1992) 2247. https://doi.org/10.1103/PhysRevC.45.2247

42. B. Buck, A.C. Merchant, S.M. Perez. Alpha-cluster structure in 212Po. Phys. Rev. Lett. 72 (1994) 1326. https://doi.org/10.1103/PhysRevLett.72.1326

43. J.-G. Deng et al. α decay properties of 296Og within the two-potential approach. Chinese Phys. C 42 (2018) 044102. https://doi.org/10.1088/1674-1137/42/4/044102

44. X.-D. Sun et al. Systematic study of α decay half-lives of doubly odd nuclei within the two-potential approach. Phys. Rev. C 95 (2017) 044303. https://doi.org/10.1103/PhysRevC.95.044303

45. J.-L. Chen et al. Systematic study on proton radioactivity of spherical proton emitters within two-potential approach. Eur. Phys. J. A 57 (2021) 305. https://doi.org/10.1140/epja/s10050-021-00618-1

46. H.-F. Zhang et al. Theoretical analysis and new formulae for half-lives of proton emission. Chinese Phys. Lett. 26 (2009) 072301. https://doi.org/10.1088/0256-307X/26/7/072301

47. Y. Lim, X. Xia, Y. Kim. Proton radioactivity in relativistic continuum Hartree-Bogoliubov theory. Phys. Rev. C 93 (2016) 014314. https://doi.org/10.1103/PhysRevC.93.014314

48. A. Soylu et al. Proton radioactivity half-lives with nuclear asymmetry factor. Chinese Phys. C 45 (2021) 044108. https://doi.org/10.1088/1674-1137/abe03f

49. Q. Zhao et al. Proton radioactivity described by covariant density functional theory with the similarity renormalization group method. Phys. Rev. C 90 (2014) 054326. https://doi.org/10.1103/PhysRevC.90.054326

50. B. Nerlo-Pomorska, K. Pomorski. Simple formula for nuclear charge radius. Zeitschrift fur Physik. A 348 (1994) 169. https://doi.org/10.1007/BF01291913

51. J.J. Morehead. Asymptotics of radial wave equations. J. Math. Phys. 36 (1995) 5431. https://doi.org/10.1063/1.531270

52. B. Buck, A.C. Merchant, S.M. Perez. Ground state proton emission from heavy nuclei. Phys. Rev. C 45 (1992) 1688. https://doi.org/10.1103/PhysRevC.45.1688

53. N.G. Kelkar, H.M. Castaneda. Critical view of WKB decay widths. Phys. Rev. C 76 (2007) 064605. https://doi.org/10.1103/PhysRevC.76.064605

54. M. Wang et al. The AME2016 atomic mass evaluation. (II). Tables, graphs and references. Chinese Phys. C 41 (2017) 030003. https://doi.org/10.1088/1674-1137/41/3/030003

55. P. Ascher et al. Direct observation of two protons in the decay of 54Zn. Phys. Rev. Lett. 107 (2011) 102502. https://doi.org/10.1103/PhysRevLett.107.102502

56. D.S. Delion, R.J. Liotta, R. Wyss. Theories of proton emission. Phys. Rep. 424 (2006) 113. https://doi.org/10.1016/j.physrep.2005.11.001

57. M.F. Jager et al. Two-proton decay of 12O and its isobaric analog state in 12N. Phys. Rev. C 86 (2012) 011304. https://doi.org/10.1103/PhysRevC.86.011304

58. D. Suzuki et al. Breakdown of the Z = 8 shell closure in unbound 12O and its mirror symmetry. Phys. Rev. Lett. 103 (2009) 152503. https://doi.org/10.1103/PhysRevLett.103.152503

59. L. Audirac et al. Direct and β-delayed multi-proton emission from atomic nuclei with a time projection chamber: the cases of 43Cr, 45Fe, and 51Ni. Eur. Phys. J. A 48 (2012) 179. https://doi.org/10.1140/epja/i2012-12179-1

There is no link in the text on Ref. 62.

60. M. Pomorski et al. Proton spectroscopy of 48Ni, 46Fe, and 44Cr. Phys. Rev. C 90 (2014) 014311. https://doi.org/10.1103/PhysRevC.90.014311